Neal's Space
  • Introduction
  • Algorithm
    • 数学基础
    • Normal
      • 一致性哈希分布
      • A star 寻路
      • 蓄水池抽样 Reservoir Sampling
    • Machine Learning
      • k-近邻算法
      • k-平均演算法
      • kd-Tree算法
      • TF-IDF 特征加权
      • 机器学习模型评价
      • 数据的归一化和标准化
      • 线性回归 - "模型之母"
      • 逻辑回归 - "出场率最高算法"
      • 决策树
  • Programming Language
    • Java
      • Lombok
      • 多数据源分页查询拼接订单
      • 集群 分布式 微服务
      • 反射
      • JAVA类加载器
      • JVM内存
      • Garbage Collection(JVM的垃圾回收机制)
      • Synchronized
      • Java跨域访问
    • Scala
      • Scala使用
  • MySQL
    • MySQL事务
    • MySQL插入多条数据时遇到的问题
    • MySQL经典50题
  • Linux
    • Linux
      • Vim
      • Ubuntu换源
      • Linux内存
    • Docker
      • Docker
      • Docker容器
      • Docker镜像
      • Docker创建本地镜像
  • Data
    • DataWarehouse
      • Sqoop
      • 多维计算
    • Hadoop
      • Hadoop
        • Docker运行Hadoop
      • Hdfs
        • HDFS块丢失过多导致进入安全模式
        • NameNode内存解析
        • HDFS的Router-Based Federation
    • Hive
      • Hive安装配置
      • Hive使用DDL
      • Hive引擎Tez
      • Sqoop与Hive出现的问题
      • Hive与Hook
    • Flume
    • Hbase
      • Hbase安装配置
      • Hbase的Bloom Filters
    • Spark
      • Spark基础
      • Spark SQL
      • Spark Streaming
      • Spark On Yarn
      • Tuning Spark 数据序列化和内存调整
      • Tuning Spark Job
    • Kafka
      • Kafka文件存储
      • 偏移量提交 与 分区再平衡
    • Flink
      • Flink遇到的坑
Powered by GitBook
On this page
  • 构建
  • 原理
  • 优化点
  • 构建过程

Was this helpful?

  1. Algorithm
  2. Machine Learning

kd-Tree算法

前面讲了knn,

kd树( k-维树的缩写)是在k维欧几里德空间组织点,对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,且kd树是一种二叉树。k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索)。k-d树是空间二分树(Binary space partitioning )的一种特殊情况。表示对k维空间的一个划分。

k-d树是每个节点都为k维点的二叉树。所有非叶子节点可以视作用一个超平面把空间分割成两个半空间。节点左边的子树代表在超平面左边的点,节点右边的子树代表在超平面右边的点。选择超平面的方法如下:每个节点都与k维中垂直于超平面的那一维有关。因此,如果选择按照x轴划分,所有x值小于指定值的节点都会出现在左子树,所有x值大于指定值的节点都会出现在右子树。这样,超平面可以用该x值来确定,其法线为x轴的单位向量。

构建

原理

  1. 循环依序取数据点的各维度来作为切分维度,

  2. 取数据点在该维度的中值作为切分超平面,

  3. 将中值左侧的数据点挂在其左子树,将中值右侧的数据点挂在其右子树,

  4. 递归处理其子树,直至所有数据点挂载完毕。

优化点

  • 选择切分维度:根据数据点在各维度上的分布情况,方差越大,分布越分散,从方差大的维度开始切分,有较好的切分效果和平衡性。

  • 确定中值点:预先对原始数据点在所有维度进行一次排序,存储下来,然后在后续的中值选择中,无须每次都对其子集进行排序,提升了性能。也可以从原始数据点中随机选择固定数目的点,然后对其进行排序,每次从这些样本点中取中值,来作为分割超平面。该方式在实践中被证明可以取得很好性能及很好的平衡性。

构建过程

采用常规的构建方式,以二维平面点(x,y)的集合(2,3),(5,4),(9,6),(4,7),(8,1),(7,2) 为例结合下图来说明k-d tree的构建过程:

  1. 构建根节点时,此时的切分维度为x,如上点集合在x维从小到大排序为(2,3),(4,7),(5,4),(7,2),(8,1),(9,6);其中值为(7,2)。(注:2,4,5,7,8,9在数学中的中值为(5 + 7)/2=6,但因该算法的中值需在点集合之内,所以本文中值计算用的是len(points)//2=3, points[3]=(7,2))

  2. (2,3),(4,7),(5,4)挂在(7,2)节点的左子树,(8,1),(9,6)挂在(7,2)节点的右子树。

  3. 构建(7,2)节点的左子树时,点集合(2,3),(4,7),(5,4)此时的切分维度为y,中值为(5,4)作为分割平面,(2,3)挂在其左子树,(4,7)挂在其右子树。

  4. 构建(7,2)节点的右子树时,点集合(8,1),(9,6)此时的切分维度也为y,中值为(9,6)作为分割平面,(8,1)挂在其左子树。至此k-d tree构建完成。

上述的构建过程结合下图可以看出,构建一个k-d tree即是将一个二维平面逐步划分的过程。

需要注意的是,对于每次切分,都是循环顺序选择维度的,二维是:x->y->x…;三维则是:x->y->z->x…。

下面从三维空间来看一下k-d tree的构建及空间划分过程。首先,边框为红色的竖直平面将整个空间划分为两部分,此两部分又分别被边框为绿色的水平平面划分为上下两部分。最后此4个子空间又分别被边框为蓝色的竖直平面分割为两部分,变为8个子空间,此8个子空间即为叶子节点。

kd树的检索是KNN算法至关重要的一步,给定点p,查询数据集中与其距离最近点的过程即为最近邻搜索。

如在构建好的k-d tree上搜索(3,5)的最近邻时,对二维空间的最近邻搜索过程作分析。首先从根节点(7,2)出发,将当前最近邻设为(7,2),对该k-d tree作深度优先遍历。以(3,5)为圆心,其到(7,2)的距离为半径画圆(多维空间为超球面),可以看出(8,1)右侧的区域与该圆不相交,所以(8,1)的右子树全部忽略。接着走到(7,2)左子树根节点(5,4),与原最近邻对比距离后,更新当前最近邻为(5,4)。以(3,5)为圆心,其到(5,4)的距离为半径画圆,发现(7,2)右侧的区域与该圆不相交,忽略该侧所有节点,这样(7,2)的整个右子树被标记为已忽略。遍历完(5,4)的左右叶子节点,发现与当前最优距离相等,不更新最近邻。所以(3,5)的最近邻为(5,4)。

Previousk-平均演算法NextTF-IDF 特征加权

Last updated 5 years ago

Was this helpful?