Spark On Yarn
Spark on Yarn 任务提交
Spark on Yarn 两种模式
Cluster 模式

Client 模式

Spark on Yarn 的启动

spark Job 生成提交流程
客户端操作
1、 根据yarnConf来初始化yarnClient,并启动yarnClient;
2、 创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException
3、 设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
4、 设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
5、 申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。
当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。
源码解析
java SparkSubmit
// JVM
- Process(SparkSubmit)
// 启动进程
- main
- SparkSubmitArguments
// 提交
- SUBMIT -> submit()
// 准备环境
- prepareSubmitEnvironment
- childMainClass = "org.apache.spark.deploy.yarn.Client"
- childMainClass = args.mainClass
- doRunMain -> runMain
// 反射加载类
- Utils.ClassForName(childMainClass)
// 查找main方法
- mainClass.getMethod("main", new Array[String](0).getClass)
// 调用main方法
- mainMethod.invoke
2 Client
- main
- new ClientArguments
- new Client
- yarnClient = YarnClient.createYarnClient
- client.run
// 获取Application的ID
// 判断资源是否满足executor和Application Master申请的资源,不满足则抛出异常
- appId = submitApplication
// 封装指令
// command = bin/java org.apache.spark.deploy.yarn.ApplicationMaster
// (command = bin/java org.apache.spark.deploy.yarn.ExecutorLauncher client)
- createContainerLaunchContext
- createApplicationSubmissionContext
// 向Yarn的ResourceManager提交应用,提交指令
// appContext中包含了应用的名字,队列,AM申请的Container,作业类型等信息
- yarnClient.submitApplication(appContext)
提交到YARN集群,YARN操作
1、 运行ApplicationMaster的run方法;
2、 设置好相关的环境变量。
3、 创建amClient,并启动;
4、 在Spark UI启动之前设置Spark UI的AmIpFilter;
5、 在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
6、 等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;
7、 当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster;
8、 分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。 如果在启动Executeors的过程中失败的次数达到了maxNumExecutorFailures的次数,maxNumExecutorFailures的计算规则如下:
// Default to numExecutors * 2, with minimum of 3 private val maxNumExecutorFailures = sparkConf.getInt("spark.yarn.max.executor.failures", sparkConf.getInt("spark.yarn.max.worker.failures", math.max(args.numExecutors * 2, 3)))
那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。
9、 最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。
源码解析
3 ApplicationMaster
// 启动进程
- main
- new ApplicationMasterArguments(args)
// 创建应用管理器
- new ApplicationMaster(amArgs, new YarnRMClient)
// 运行
- runDriver
// 启动用户指定的spark应用
- startUserApplication
// 获取用户应用的main方法
- userClassLoader.loadClass(args.userClass).getMethod("main", classOf[Array[String]])
// 启动Driver线程,执行用户类的main方法
- val userThread = new Thread
- userThread.setContextClassLoader(userClassLoader)
- userThread.setName("Driver")
- userThread.start()
// 注册ApplicationMaster
- registerAM
// 获取Yarn资源
// client: YarnRMClient
- client.register
// 分配Yarn资源
- allocator.allocateResources()
// 处理可分配资源
- handleAllocatedContainers(allocatedContainers.asScala)
// 运行可分配的Container
- runAllocatedContainers(containersToUse)
- new ExecutorRunnable().run
- startContainer
// 封装指令
// command = bin/java org.apache.spark.executor.CoarseGrainedExecutorBackend
- perpareCommand
4 CoarseGrainedExecutorBackend
// RpcEndpint
/*
* The life-cycle of an endpoint is:
*
* constructor -> onStart -> receive* -> onStop
*/
- onStart
// ExecutorBackend向ApplicationMaster反向注册
- ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
- receive
// 注册Executor
- case RegisteredExecutor
- new Executor(executorId, hostname, env, userClassPath, isLocal = false)
// 运行任务
- case LaunchTask(data)
- executor.launchTask(this, taskDesc)
// 启动进程
- main
- run
env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
dispatcher.registerRpcEndpoint(name, endpoint)
// Executor的后台进程
=> CoarseGrainedExecutorBackend
// 注册
-> ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
// Scheduler的后台进程
=> CoarseGrainedSchedulerBackend(SparkContext)
-> addressToExecutorId(executorAddress) = executorId
-> totalCoreCount.addAndGet(Executor.cores)
-> totalRegisteredExecutors.addAndGet(1)
-> executorRef.send(RegisteredExecutor)
-> executorDataMap.put(executorId, data)
// ExecutorBackend进程 新建 Executor对象
=> CoarseGrainedExecutorBackend
-> executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
spark Job 执行流程
执行action算子,最终都是调用了RDD.SparkContext.runJob
1 SparkContext
- runJob
- dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
DAG任务流程
DAG任务 划分Stage,
2 DAGScheduler
- runJob
- submitJob
// 提交 JobSubmitted
// 此处最终为 BlockingQueue(阻塞队列) 的 put(提交)
- eventProcessLoop.post(JobSubmitted(jobId, rdd, func2, partitions.toArray, callSite, waiter, SerializationUtils.clone(properties)))
// 提交后 EventLoop 执行 run() -> onReceive -> EventLoop 的实现类 DAGSchedulerEventProcessLoop 的onReceive
=> onReceive(eventQueue.take())
- case JobSubmitted => dagScheduler.handleJobSubmitted
-> finalStage = createResultStage
-> val parents = getOrCreateParentStages(rdd, jobId)
-> getShuffleDependencies(rdd)
// 遍历 rdd 的所有依赖,遇到ShuffleDependecy则放入parents: HashSet[ShuffleDependency]中最后一起返回
-> waitingForVisit.push(rdd)
-> waitingForVistit .pop -> toVisit
toVisit.dependencies.foreach {
case shuffleDep: ShuffleDependency[_, _, _] => parents += shuffleDep
case dependency => waitingForVisit.push(dependency.rdd)
}
-> getOrCreateShuffleMapStage(shuffleDep, firstJobId)
-> shuffleIdToMapStage.get
// 逻辑同getShuffleDependencies 最终返回 ancestors: Stack[ShuffleDependency]
-> None => getMissingAncestorShuffleDependencies
->
-> val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
// Job 里包含了 Stage (finalStage) ,finalStage中包含了 parents: List[Stage]
-> val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
// 设置 Job 到 fianlStage: ResultStage 中
-> finalStage.setActiveJob(job)
-> submitStage(finalStage)
DAG任务 提交Stage
生成Task
2 DAGScheduler
//提交任务
-> submitStage(finalStage)
// 获取 stage里的rdd,遍历rdd.dependecies,获取其中的ShuffleDependecy,放入missing中并返回
-> val missing = getMissingParentStages(stage).sortBy(_.id)
// 如果 missing 为空,则提交任务,
// 否则递归调用 submitStage(missing.parent)
// 先提交最底依赖的父Stage,然后子Stage提交
-> submitMissingTasks(stage, jobId.get)
// 每个partitions创建一个Task
-> val tasks: Seq[Task[_]] = stage match {
case stage: ShuffleMapStage => partitionsToCompute.map(new ShuffleMapTask)
case stage: ResultStage => partitionsToCompute.map(new ResultTask)
}
// 把前面创建的tasks创建为TaskSet
// 如果DAGScheduler中的`!tasks.size>0`,submitWaitingChildStages(stage)
-> taskScheduler.submitTasks(new TaskSet(tasks, ...))
// TaskScheDuler发送提交Task的唤醒提交的请求
-> CoarseGrainedSchedulerBackend.reviveOffers
Driver发送Task给Executor,Executor启动Task
3 CoarseGrainedSchedulerBackend
-> reviveOffers
// 给Driver终端发送ReviveOffers
-> driverEndpoint.send(ReviveOffers)
-> makeOffers()
-> launchTasks(taskDescs)
// task的 HashMap 序列化发送给Executor
-> executorDataMap(task.executorId).executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
4 CoarseGrainedExecutorBackend
- LaunchTask
// 接收到的task(data.value)反编码成TaskDescription
// 启动Task
-> executor.launchTask(this, TaskDescription.decode(data.value))
Spark 任务执行优化请看 Tune Spark Job
以上,Spark On Yarn的 Cluter模式的调度。
Last updated
Was this helpful?